
James’ Random Walk Problem:
Description, Solution,

Simulation, and Visualization
M.M. Dalkilic, PhD

Bloomington, IN, USA February
13, 2025

Introduction and Motivation

As described in the club by James, random walk questions are common for
quant interviews. Random walks are an important class of models that pro-
vide insight into how random processes behave over time. For this problem,
we describe a simple random walk of two independent processes seeking to
answering a question about their relationship. There exists a fair amount of
technical material on the subject; for this exposition, we’ll be limiting our-
selves to examination with the fewest mathematical skills required, but addi-
tionally building a simulation to find whether our approach appears sound.
To our delight the simulation is consistent with the theory.

Problem

Two drunks both start at a position zero just outside the bar
wanting to return to their respective homes. We envision this as
something like this: · · · ↔ -1↔ 0↔ 1↔ · · · . Their inebriation
causes them each to randomly take single steps to the left or
right with the same equal probability, i.e., left 50% of the time
and right 50% of the time independently both of their respective
previous steps and one another. After each has completed six
total steps, what is the probability that they have returned to
the starting point zero?

When there are only two outcomes, but several times, we can leverage
the binomial: (

n

m

)
=

n!

m!(n−m)!
(1)

(a+ b)n =
n∑

i=0

(
n

n− i

)
an−ibi (2)

The coefficient gives us the count of permutations of a, b. As a probability
model, we’d include the two probabilties of a, b occurring; however, since
they’re equal, we can focus solely on the coefficients. For this problem,
n = 6. If we let a = L, b = R for moving left and right, respectively we find

1

for six steps:

LLLLLL 1 (3)

LLLLLR 6 (4)

LLLLRR 15 (5)

LLLRRR 20 (6)

LLRRRR 15 (7)

LRRRRR 6 (8)

RRRRRR 1 (9)

For example, there are six permutations where there is only one step to the
right:

LLLLLR, LLLLRL, LLLRLL, LLRLLL, LRLLLL,RLLLLL

The total number of different permutations is 2(1) + 2(6) + 2(15) + 20 = 64.
Continuing our examination when when the drunk takes only a single step
right, he’ll finish at -4 (using a number line starting at zero). Fig. 1 shows
all the possible final locations after six steps using a number line starting at
zero.

Figure 1: A drunk (robot) starting a zero. Each color square represents a
possible final destination after six steps. We let left L = −1 and R = 1.
There are six different ways to end at -4 which is

(
6
1

)
= 6!

1!(6−1)!
.

The probabilites can be found by dividing the coeficient values by the

2

sum.

LLLLLL
1

64
(10)

LLLLLR 6/64 (11)

LLLLRR 15/64 (12)

LLLRRR 20/64 (13)

LLRRRR 15/64 (14)

LRRRRR 6/64 (15)

RRRRRR 1/64 (16)

Let’s see code that generates these values:

1 import math

2
3 n = 6 #stepps

4 coefs = [math.comb(n,i) for i in range(n+1)]

5
6 for i in range(n+1):

7 movement = ’L’*(n-i) + ’R’*i

8 location = -1*(n-i) + 1*i

9 print(movement , location , coefs[i],coefs[i]/sum←↩
(coefs))

produces:

1 LLLLLL -6 1 0.015625

2 LLLLLR -4 6 0.09375

3 LLLLRR -2 15 0.234375

4 LLLRRR 0 20 0.3125

5 LLRRRR 2 15 0.234375

6 LRRRRR 4 6 0.09375

7 RRRRRR 6 1 0.015625

A drunk, by himself, will have about a 31% chance to return to where he
started after six steps, but about a 10% chance to land at -4 or 4. Because
there are an even number of steps, it’s impossible to land on an odd number.
We’d be claiming that 2k = 2k + 1 for some k which means we’d be saying
that 0 = 1.

3

Simulation and Visualization of One Dimen-

sion

In this section we describe how we can simulate the distribution. First,
observe that after six steps, there are only seven values: -6,-4,-2,0,2,4,6. Our
simulation will generate these values from a random, uniform process using
-1,1 in place of L,R. We sum these six values resulting in one of the final
destinations. Here’s the pertinent code:

1 #input n steps left: -1, right 1 equiprobable

2 #output sum

3 def get_drunken_walk(n):

4 return sum ([1 if rn.randint (0,1) else -1 for _ ←↩
in range(n)])

If n = 6, then we’ll have a summation of six terms using -1,1. We generate
1,000,000 walks keeping track of how each combination. Here’s the relevant
code:

1 #simulations

2 history = {}

3 simulations = 1000000

4 simulated_history = {}

5 for i in range(simulations):

6 walk = get_drunken_walk(n)

7 if walk in history.keys():

8 history[walk] += 1

9 else:

10 history[walk] = 1

The simulated history will hold the fractions computed from history.
Let’s plot the two distributions using heat maps. This is a popular visualiza-
tion tool to better understand relative counts that perhaps are too difficult
to understand from simply numbers. Figure 2 shows two heatmaps. On the
left is our theoretical map (with probabilities to the left). On the right is the
simulation. The values are nearly identical.

4

Figure 2: Heatmaps of the final destinations taking six steps randomly. The
simulation is consistent with the theory.

Two Drunks

We now move to two drunks. We leverage the fact that they move inde-
pendently of each other (in addition to moving independently at each step).
Figure 3 shows how we’ll visualize the two. We mark one drunk moving hor-
izontally and the other vertically. This makes understanding simpler as well
as providing an easier graphic to interpret. Another helpful technique is to

Figure 3: Both drunks (robots) starting a zero. Each color square represents
a possible final destination after six steps. Since these are independent, we
form the cross product to find the probablities.

introduce some notation (it’s really just programming). How might we write

5

the problem using probabilities? Let’s use X, Y represent drunk 1 and drunk
2, respectively. Let’s use our subscript to denote steps and superscript where
the drunk ends up. Then, to start, we have X0

0 , Y
0
0 . What we want to find

is P (X0
6 and Y 0

6). Since these processes are independent, we can rewrite this
as:

P (X0
6 and Y 0

6) = P (X0
6)P (Y 0

6) (17)

=
20

64
· 20
64
≈ 0.0977 (18)

To model two, independent drunks we can use the product for (i, j),
i, j ∈ {−6,−4,−2, 0, 2, 4, 6} as X i

6, Y
j
6 and, thus,

P (X i
6 and Y j

6) = P (X i
6)P (Y j

6) (19)

Figure 3. shows two heat maps: the theoretical distribution and simulation.

Figure 4: Each cell is indexed by the pair of final locations i, j ∈
{−6,−4,−2, 0, 2, 4, 6}, X i

6, Y
j
6 the entry is the probability of that event. For

example, (0,0) means X0
6 and Y 0

6 in which both drunks, after six steps, found
themselves at the place they began. This occurs about 10% of the time.
(Left) Theoretical distribution of the possible final destinations of the two
drunks. (Right) Simulation of the outcomes.

Each cell is indexed by the pair of final locations on the number line and

6

contains the probability of that event. For example, (0,0) means both drunks,
after six steps, found themselves at the place they began. If we sum across,
say j = 0, we have all the probabilties where X stopped:∑

i

P (X i
6 and Y 0

6) = 2(0.0049) + 2(0.0293) + 2(0.0732) + 0.0977 (20)

= 0.3125

which is the marginal probability of Y 0
6 (see Fig. 2).

7

Questions for Students

1. Look for the arguments for and against random walks in finance. What
is evidence that the model is useful? What are the criticisms?

2. The problem is usually generalized: what’s the probability that, after
six steps, both drunks end in the same spot when starting from the
same spot (origin)?

(a) How might we use our notation to describe this problem?

(b) What would be a reasonable simple formula?

(c) How might we use the tables to determine the value? On this
account, there are closed forms (which require a bit of experience),
but one of the simplest for this problem is n = 6:

n∑
k=0

(
n

k

)2

=

(
2n

n

)
(21)

2−2(n)

n∑
k=0

(
n

k

)2

=

(
2n
n

)
22n

(22)(
2(6)
6

)
22(6)

=
924

4096
≈ 0.223 (23)

We need Eq. 21 which allows us to simplify the summation. There
will be a slight difference in the values drawn from the tables and
the one above. Code confirms this:

1 import math

2 n = 6

3
4 def summation(n):

5 return (2**(-2*n)) * sum ([(math.comb(n,←↩
k))**2 for k in range(n+1)])

6
7 close_form = lambda n: math.comb (2*n,n)←↩

*(2**(-2*n))

8
9 print(summation(n), close_form(n))

8

producing:

1 0.2255859375 0.2255859375

3. What if drunk 1 stepped right with .6 of the time and left the remainder,
while drunk 2 did the opposite?

(a) What additions would we need in the theoretical and simulation?

(b) What is the probablity that both end up where they started?

4. Another form of this problem is someone standing where he’s k steps
from a cliff (k + 1 he falls to his death on the right) with any amount
of space to the left. What’s the probablity (if both steps are equally
likely) for the fellow to live after taking n ≥ k steps? To simplify this
problem, let’s assume the cliff is five steps away on the right. If he
takes six steps he’ll fall. What is the probability he’ll live after eight
steps?

9

Simulation and Visualization Code

To simulate this problem we allow both drunks to take six steps 1,000,000
times, then find the relative frequence (which is simply dividing by 106). We
then use heat maps to visualize the probabilities. Some code is written less
succintly to show students what’s happening. For example, line 60 would,
for a real world solution, be written as a function depending on n. The first
program generates the single simulation; the second is the full simulation.

Simulation and Visualization for One Drunk

1 import random as rn

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import math

5
6 # MMDalkilic , Bloomington , IN, USA

7 # 2/12/2025

8
9 # compare theoretical to simulation

10 # of a drunk taking six steps , left or right with ←↩
equal probability

11 # what are the probabilities of the final ←↩
destinations >

12
13 #input n steps left: -1, right 1 equiprobable

14 #output sum

15 def get_drunken_walk(n):

16 return sum ([1 if rn.randint (0,1) else -1 for _ ←↩
in range(n)])

17
18
19 #hold theoretical distribution of one drunk

20 theo_dist_1_dimension = {}

21 n = 6 #number of steps

22 coef = [math.comb(n,i) for i in range(n+1)] #←↩
binomial coefficients

23
24 #build distribution for drunk 1

10

25 for i in range(n+1):

26 # movement = ’L ’*(n-i) + ’R ’*i

27 location = -1*(n-i) + 1*i

28 theo_dist_1_dimension[location] = coef[i]/sum(←↩
coef)

29
30
31 #simulations

32 history = {}

33 simulations = 1000000

34 simulated_history = {}

35 for i in range(simulations):

36 walk = get_drunken_walk(n)

37 if walk in history.keys():

38 history[walk] += 1

39 else:

40 history[walk] = 1

41
42 for k,v in history.items():

43 simulated_history[k] = round(v/simulations ,6)

44
45 #need labels as locations

46 drunk = [-6,-4, -2, 0, 2, 4, 6]

47
48 #convert label to array position

49 m = {-6:0, -4:1, -2:2, 0:3, 2:4, 4:5, 6:6}

50
51 #build heat maps

52 positions_theory = np.zeros ((7 ,1))

53 positions_simulation = np.zeros ((7 ,1))

54
55 for k,v in theo_dist_1_dimension.items():

56 positions_theory[m[k]] = v

57
58 for k,v in simulated_history.items():

59 positions_simulation[m[k]] = v

60
61 #create plot

62 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(5, 2)←↩
)

11

63
64 # Plot the first heatmap

65 heatmap1 = ax1.imshow(positions_theory)

66 ax1.set_title(’Theory ’)

67 fig.colorbar(heatmap1 , ax=ax1)

68
69 # Plot the second heatmap

70 heatmap2 = ax2.imshow(positions_simulation)

71 ax2.set_title(’Sim.’)

72 fig.colorbar(heatmap2 , ax=ax2)

73
74 #Show ticks as final locations

75 ax1.set_xticks ([])

76 ax1.set_yticks(range(len(drunk)), labels=drunk)

77
78 ax2.set_xticks ([])

79 ax2.set_yticks(range(len(drunk)), labels=drunk)

80
81 #display probabilities next to ticks

82 for i in range(len(drunk)):

83 text1 = ax1.text(-3, i,round(←↩
positions_theory[i][0] ,4),ha="center", ←↩
va="center", color="black")

84
85 for i in range(len(drunk)):

86 text2 = ax2.text(-3,i,round(←↩
positions_simulation[i][0] ,4),ha="center←↩
", va="center", color="black")

87
88 fig.tight_layout ()

89 plt.show()

12

Simulation and Visualization for Two Drunks

1 import random as rn

2 import matplotlib.pyplot as plt

3 import numpy as np

4 import math

5
6 #MMDalkilic , Bloomington , IN, USA

7 #2/12/2025

8
9

10 #compare theoretical to simulation

11 #two drunks start at origin

12 #take six steps , left or right with equal ←↩
probability and independently

13 #what is the probability they end at the origin?

14
15 #input n steps left: -1, right 1 equiprobable

16 #output sum

17 def get_drunken_walk(n):

18 return sum ([1 if rn.randint (0,1) else -1 for _ ←↩
in range(n)])

19
20
21 #hold theoretical distribution of one drunk

22 theo_dist_1_dimension = {}

23 n = 6 #number of steps

24 coef = [math.comb(n,i) for i in range(n+1)] #←↩
binomial coefficients

25
26 #build distribution for drunk 1

27 for i in range(n+1):

28 # movement = ’L ’*(n-i) + ’R ’*i

29 location = -1*(n-i) + 1*i

30 theo_dist_1_dimension[location] = coef[i]/sum(←↩
coef)

31
32 #build distribution for both drunk 1, drunk 2

13

33 #these are independent P(drunk 1, drunk 2) = P(←↩
drunk 1)P(drunk 2)

34 theo_dist = {}

35 for k1 ,v1 in theo_dist_1_dimension.items():

36 for k2 , v2 in theo_dist_1_dimension.items():

37 theo_dist [(k1 ,k2)] = round(v1*v2, 6)

38
39 #simulations

40 history = {}

41 simulations = 1000000

42 simulated_history = {}

43 for i in range(simulations):

44 walk_1 = get_drunken_walk(n)

45 walk_2 = get_drunken_walk(n)

46 if (walk_1 , walk_2) in history.keys():

47 history [(walk_1 , walk_2)] += 1

48 else:

49 history [(walk_1 , walk_2)] = 1

50
51
52 for k,v in history.items():

53 simulated_history[k] = round(v/simulations ,6)

54
55
56 #need labels as locations

57 drunk_1 = [-6,-4, -2, 0, 2, 4, 6,]

58 drunk_2 = drunk_1

59 #convert label to array position

60 m = {-6:0, -4:1, -2:2, 0:3, 2:4, 4:5, 6:6}

61
62 #build heat maps

63 positions1 = np.zeros ((7, 7))

64 positions2 = np.zeros ((7, 7))

65
66 for k,v in theo_dist.items():

67 x,y = m[k[0]],m[k[1]]

68 positions1[x][y] = v

69
70 for k,v in simulated_history.items():

71 x,y = m[k[0]],m[k[1]]

14

72 positions2[x][y] = v

73
74 fig , (ax1 , ax2) = plt.subplots(1, 2, figsize =(12, ←↩

6))

75
76 # Plot the first heat map

77 heatmap1 = ax1.imshow(positions1)

78 ax1.set_title(’Theoretical (drunk 1 position , drunk←↩
2 position)’)

79 fig.colorbar(heatmap1 , ax=ax1)

80
81 # Plot the second heat map

82 heatmap2 = ax2.imshow(positions2)

83 ax2.set_title(’Simulation (drunk 1 position , drunk ←↩
2 position)’)

84 fig.colorbar(heatmap2 , ax=ax2)

85
86 # Show all ticks and label them with the respective←↩

final location

87 ax1.set_xticks(range(len(drunk_1)), labels=drunk_1)

88 ax1.set_yticks(range(len(drunk_2)), labels=drunk_2)

89
90 ax2.set_xticks(range(len(drunk_1)), labels=drunk_1)

91 ax2.set_yticks(range(len(drunk_2)), labels=drunk_2)

92
93 # Loop over data dimensions and create text ←↩

annotations.

94 for i in range(len(drunk_1)):

95 for j in range(len(drunk_2)):

96 text1 = ax1.text(j, i,round(positions1[i][j←↩
],4),ha="center", va="center", color="w"←↩
)

97
98 for i in range(len(drunk_1)):

99 for j in range(len(drunk_2)):

100 text2 = ax2.text(j, i,round(positions2[i][j←↩
],4),ha="center", va="center", color="w"←↩
)

101
102 fig.tight_layout ()

15

103 plt.show()

16

